Water Treatment Challenges in the Philippines: The King-king Copper/Gold Project

Mine Design, Operations & Closure Conference May 2013

Mark Reinsel, Ph.D., P.E. Apex Engineering, PLLC

older sociates Neal Gallagher

Presentation Outline

- **1. The King-king Mine**
- 2. Anticipated treatment challenges
- **3.** Original prefeasibility findings
- 4. Latest water quality & quantity information
- 5. Potential water treatment

Golder

Location

- About 35 km east-northeast of Davao City (1.5 M people) by air
- 92 km from Davao City by paved road
- 13 ports in the Davao Region
- Owner is St. Augustine Gold & Copper (Spokane, WA)
- Client is MDC America, Inc.

Mining in the Philippines

- 35 operating metallic mines
- One operating copper smelter and one nickel processing plant
- Over 250,000 Filipinos employed

King-king Project

- Measured & indicated reserves
 - 10.3 M oz Au (0.334 g/t)
 - 5.4 B lbs Cu (0.254%)
- Resource value of \$41 B (Sept. 2011)
- 100,000 tpd ore delivery
- Mine life of 20+ years

- 395,000 oz Au @ 0.597 g/t
- 267 M lbs Cu @ 0.397%

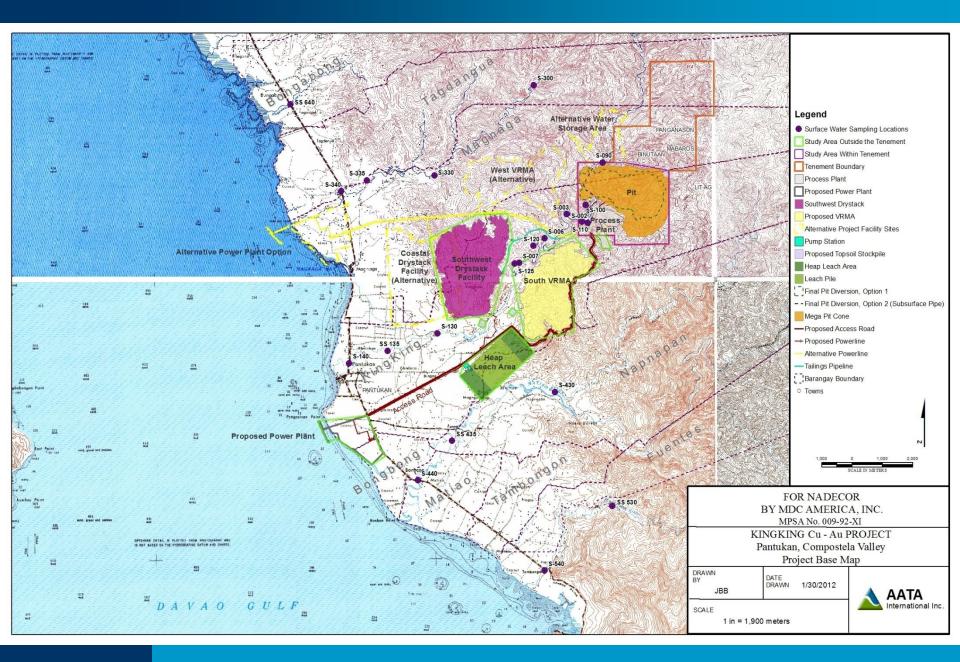
Key Milestones

- Feb. 2012: EIS submittal
- May 2012: Declaration of mine project feasibility
- Q4 2012: Preliminary feasibility technical report
- Q3 2013: Bankable feasibility study
- Currently in permitting phase

Anticipated Treatment Challenges

- Lots of water!
- Many water sources, some with potentially poor quality
- Several sets of regulatory requirements
- Very large site
- Remote location from most water treatment equipment suppliers

ORIGINAL PREFEASIBILITY FINDINGS



Waters to Treat

- Valueless rock management area (VRMA) runoff
- Tailings storage facility (TSF) runoff
- Pit groundwater
- Pit runoff
- Heap leach spent ore (HLSO) runoff
- Drinking water supply

• Wastewater

Flow Rates

	Max. Flov	Max. Flow Rate (gpm)		
Source	Year 1	Year 18		
VRMA runof	ff 185	2,424		
TSF runoff	810	5,786		
Pit GW	3,199	3,089		
Pit runoff	189	7,242		
es HLSO runoff	£ 898	0		

Contaminants of Potential Concern

- pH
- Total and dissolved metals (esp. copper)
- TSS
- Sulfate
- TDS
- Nitrate?

Regulatory Compliance Standards

- International Finance Corporation (IFC) guidelines for mining operations
- Philippine drinking water standards
- Philippines draft 2008 inland or marine standards for metals and sulfate treatment

- Golder
- Philippines draft 2008 inland or marine standards for metals only

Analysis of Standards

- IFC discharge limits are generally less stringent than others
- For categories with metals limits, most of the limits are similar
- Wide range of limits for TDS and TDS constituents such as sodium, chloride and sulfate

Anticipated Water Treatment

- Need to treat at least one water source for the following contaminants
- Probable:
 - Cd, Cu, Fe, Mn, Ni, Zn, pH, F, SO₄
- Possible:
 - Al, Sb, As, B, Cr, Pb, Hg, Se, TDS, TSS

Examined many different treatment combinations and scenarios

Drinking Water and Wastewater

- 4,000 people initially (construction phase)
- 2,000 people later (mine operations)
- Could have central treatment, or two or more locations
- For drinking water, select best available water as feed to DWTP

•

Probably packaged plants

LATEST WATER QUALITY & QUANTITY INFORMATION

New Findings

- Less acid generation than previously predicted (higher pH, lower metals)
 VRMA metals conc. reduced by ≥ 10x
 HLSO metals conc. are higher
- Projected flows have generally decreased, especially early in mine life
- New water balance from AMEC

VRMA Water Quality

- Encapsulation strategy
 - Assumed that one lift of material would be max. volume of rock contacting stormwater
- Used barrel test results to predict water quality

VRMA Composition

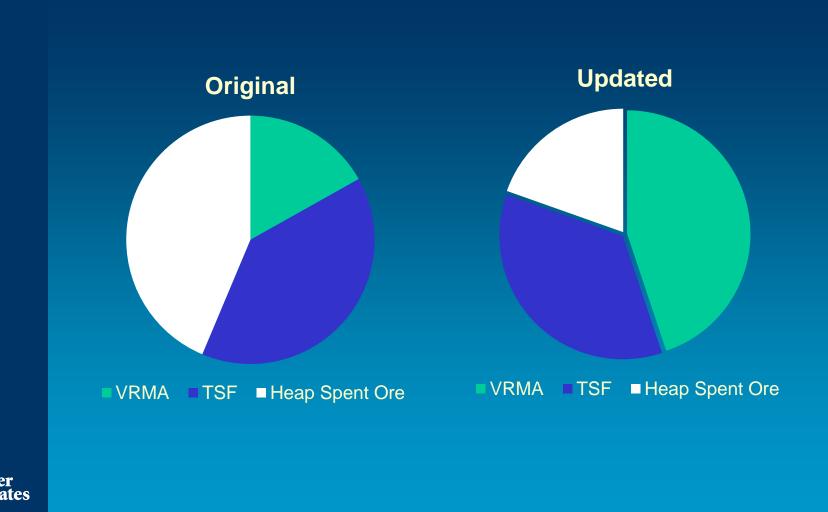
Alteration Type	<u>Tons</u>	Percent
Advanced Agrillic Zone	2,328,213	0.35%
Sericite-Clay-Chlorite	9,262,386	1.4%
Propylitic-Chlorite sub- zone	1,961,663	0.3%
Other rock types	642,542,956	97.9%

HLSO Water Quality

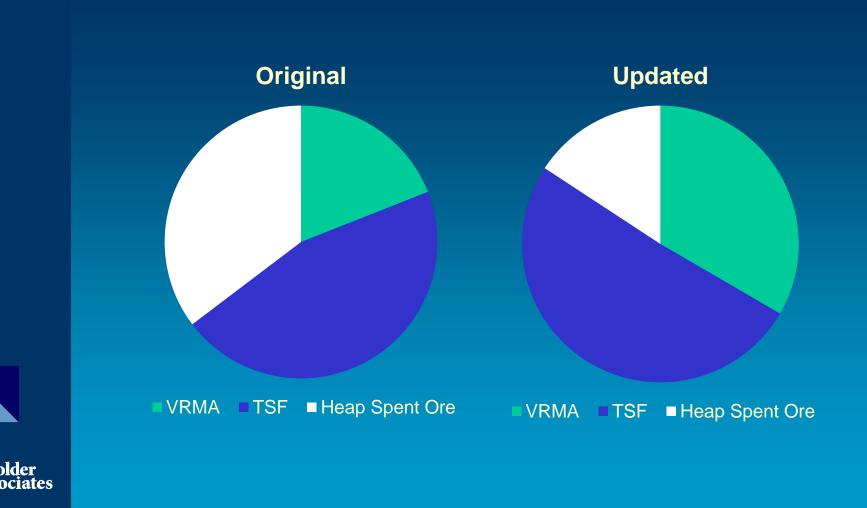
- Now assuming different WQ from TSF
 - Complete encapsulation
 - 10% of HLSO volume would be filled each year for 10 years
 - 1% of rock contains moisture from leach operations (dissolved contaminants)

Two years after placement, HLSO contribution decreases to 0%

– One year after placement, HLSO


contribution decreases to 50%

Flow Rates


Max. Flow Rate (gpm)

Source	Year 1	Year 18
VRMA runoff	960	2,550
TSF runoff	760	2,700
Pit GW	650	3,700
Pit runoff	88	3,370
HLSO runoff	420	0

Year 1-5 Water Balance

Year 6-10 Water Balance

Conclusions

- Very little AG material is present
- Water treatment may not be required to meet Philippine inland and/or marine WQ standards in Years 1-10
- Further study required to determine water treatment needs for feasibility study

 Capital and O&M costs for water treatment may be deferred by ten years

Potential Unit Operations If/When Water Treatment Is Needed

- Neutralization
- Co-precipitation
- Coagulation/flocculation
- Clarification
- Media or membrane filtration
- Biological treatment
- Sludge dewatering

- Reverse osmosis or ion exchange
- Disinfection

Mark Reinsel

mark@apexengineering.us

406-493-0368

